top of page
Search

Data Requirements: What AI Agents Need to Learn Your Process 

  • Writer: Tayana Solutions
    Tayana Solutions
  • 1 day ago
  • 6 min read

The Data Question 

"What data do AI agents need?" determines implementation preparation. Understanding data requirements - historical examples, decision criteria, outcome definitions - enables realistic timeline planning. 

 

Reality: Data gathering takes 2-3 weeks, not months. Implementation partner guides the process. 

 

 

Data Category 1: Process Examples 

Historical Exception Scenarios 

What's needed: 20-30 examples of typical exceptions with outcomes 

For AR collections: 

  • Customer account details 

  • Invoice amount and age 

  • What staff did (called, emailed, sent letter) 

  • Customer response 

  • Outcome (payment commitment, dispute, no response) 

Example: 

  • Customer: ABC Company 

  • Invoice: $12,500, 25 days overdue 

  • Action: Called customer, spoke to AP manager 

  • Response: "We'll pay next week, expecting large payment from our customer" 

  • Outcome: Payment commitment for 7 days, followed up, payment received 

Purpose: AI learns typical scenarios, appropriate responses, expected outcomes 

 

Edge Cases 

What's needed: 5-10 examples of unusual or complex situations 

Examples: 

  • Customer bankruptcy filing 

  • Disputed invoice requiring investigation 

  • Payment misdirected to wrong account 

  • Merger/acquisition changing payment entity 

  • Natural disaster affecting customer 

Purpose: AI learns to recognize situations requiring human escalation 

 

 

Data Category 2: Decision Rules 

Explicit Decision Criteria 

What's needed: Your business rules documented 

For collections: 

  • When to call vs. email (e.g., >$10K balance always call first) 

  • Payment plan limits (e.g., up to 3 months for balances under $25K) 

  • Escalation thresholds (e.g., disputes over $5K to AR manager) 

  • VIP account definitions (e.g., >$100K annual revenue, strategic partners) 

  • Communication frequency (e.g., contact every 7 days until resolved) 

Format: If-then rules or decision trees 

Example: 

IF balance > $10,000 AND overdue > 30 days 

  THEN call before email 

 

IF customer requests payment plan 

  AND balance < $25,000 

  AND plan duration <= 3 months 

  THEN approve 

  ELSE escalate to controller 

 

Implicit Knowledge 

What's needed: Unwritten rules staff follows 

Discovery process: 

  • Interview staff about decision-making 

  • Ask "how do you decide..." questions 

  • Document reasoning patterns 

  • Identify judgment criteria 

Examples discovered: 

  • "I'm more flexible with long-time customers" 

  • "If they've always paid eventually, I give more time" 

  • "Construction companies I expect seasonal payment patterns" 

  • "If they're combative, I escalate immediately" 

Challenge: Converting implicit knowledge to explicit rules 

Approach: Implementation partner facilitates workshops, asks probing questions, documents patterns 

 

 

Data Category 3: Customer Segmentation 

Account Classification 

What's needed: How you categorize customers 

Common segments: 

  • VIP/Strategic (require special handling) 

  • Standard commercial (typical process) 

  • Small business (may need more flexibility) 

  • Government (specific payment processes) 

  • International (payment method differences) 

For each segment: 

  • Defining criteria 

  • Process variations 

  • Special considerations 

  • Escalation rules 

 

Contact Preferences 

What's needed: How customers prefer communication 

Data to provide: 

  • Phone vs. email preference (if known) 

  • Best time to contact (if known) 

  • Decision-maker identification 

  • Language preferences 

  • Any special instructions 

Often this data doesn't exist systematically: Implementation identifies what's available, works with what exists, flags gaps for future enhancement 

 

 

Data Category 4: Outcome Definitions 

Success Criteria 

What's needed: What constitutes successful resolution 

For collections: 

  • Payment commitment with specific date 

  • Payment received 

  • Dispute resolved with credit/adjustment 

  • Payment plan agreement 

For vendor bills: 

  • Bill approved for payment 

  • Discrepancy resolved 

  • PO amended to match bill 

  • Bill rejected with documentation 

Purpose: AI knows when exception is resolved vs. requires follow-up 

 

 

Follow-Up Requirements 

What's needed: When and how to follow up 

Rules to document: 

  • Payment commitment follow-up (e.g., day after commitment date) 

  • No response follow-up (e.g., 7 days after initial contact) 

  • Dispute follow-up (e.g., 3 days after escalation) 

  • Payment plan monitoring (e.g., verify payment received each period) 

 

 

Data Category 5: Communication Templates 

Existing Templates 

What's needed: Current email templates, letter templates, scripts 

Purpose: 

  • Understand tone and messaging 

  • Identify key information communicated 

  • Maintain brand voice consistency 

What to provide: 

  • Collection reminder emails 

  • Payment plan offer letters 

  • Dispute resolution communications 

  • Follow-up messages 

AI will adapt, not copy: Templates provide guidance, AI generates contextual messages 

 

Tone and Voice 

What's needed: Communication style preferences 

Considerations: 

  • Professional vs. friendly 

  • Firm vs. understanding 

  • Formal vs. conversational 

  • Industry-specific norms 

How documented: 

  • Examples of good communications 

  • Examples of poor communications 

  • Staff feedback on tone 

  • Customer feedback if available 

 

 

Data Gathering Process 

Week 1: Discovery Workshop 

Participants: 

  • Controller or AR/AP manager 

  • Staff who handle exceptions 

  • Implementation partner 

Activities: 

  • Current process walkthrough 

  • Decision rule documentation 

  • Edge case discussion 

  • Customer segment identification 

Deliverables: 

  • Process flow documentation 

  • Initial decision rule matrix 

  • Exception scenario list 

Time required: 6-8 hours spread over 3-4 sessions 

 

 

Week 2: Data Compilation 

Staff activities: 

  • Export 20-30 recent exception examples from ERP 

  • Gather existing email templates 

  • Document implicit rules identified in workshop 

  • Identify VIP account list 

Implementation partner: 

  • Synthesize workshop notes 

  • Create decision tree drafts 

  • Identify data gaps 

  • Prepare for review session 

Time required: 4-6 hours staff time 

 

 

Week 3: Review and Refinement 

Activities: 

  • Review decision rules with staff 

  • Test rules against historical scenarios 

  • Refine edge case handling 

  • Finalize escalation criteria 

Deliverables: 

  • Complete decision rule matrix 

  • Escalation criteria 

  • Customer segmentation 

  • Communication templates 

Time required: 2-3 hours review session 

 

 

What Data You DON'T Need 

Complete Historical Database 

Not needed: Every exception from past 5 years 

What's sufficient: 20-30 representative recent examples (last 6-12 months) 

Why: AI learns patterns, not memorizes history 

 

Perfect Data Quality 

Not needed: 100% clean, complete data 

What's acceptable: 

  • Some missing contact information 

  • Incomplete notes on past interactions 

  • Gaps in documentation 

Approach: Work with available data, improve during pilot 

 

Fully Documented Processes 

Not needed: 200-page process manual 

What's sufficient: 

  • High-level process flow 

  • Key decision criteria 

  • Escalation rules 

  • Edge case examples 

Why: Over-documentation creates analysis paralysis. Basics sufficient to start, refinement during pilot. 

 

 

Data Sources 

From ERP 

Extractable: 

  • Customer master data 

  • Transaction history 

  • Payment history 

  • Account notes (if documented) 

How to extract: 

  • Standard reports 

  • Data export 

  • API queries (if testing integration) 

 

From Staff Knowledge 

How to capture: 

  • Discovery workshops 

  • Interview sessions 

  • Observation (shadow staff handling exceptions) 

  • Documentation review 

Time required: 6-10 hours over 2-3 weeks 

 

From Existing Documentation 

What to gather: 

  • Email templates 

  • Process documentation (if exists) 

  • Training materials 

  • Any decision matrices or approval workflows 

Often limited: Many companies have minimal documentation. That's normal and acceptable. 

 

 

Data Privacy Considerations 

What Implementation Partner Sees 

During data gathering: 

  • Customer names and contact info 

  • Invoice amounts and ages 

  • Communication examples 

  • Payment history 

Protections: 

  • Non-disclosure agreement (NDA) 

  • Data encryption in transit 

  • Deletion after implementation 

  • No sharing with third parties 

 

Sensitive Data Handling 

Exclude from examples: 

  • Social security numbers 

  • Bank account details 

  • Credit card information 

  • Any regulated PII not needed 

Include only: 

  • Data necessary for exception handling 

  • Customer business relationship info 

  • Transaction details 

  • Communication history 

 

When Data Is Insufficient 

Scenario: Limited Historical Examples 

Problem: Only have 5-10 exception examples 

Solution: 

  • Use those 5-10 as starting point 

  • Staff provides hypothetical scenarios 

  • Test with live data during pilot 

  • Refine based on actual results 

Impact: 2-3 weeks additional refinement during pilot 

 

Scenario: Undocumented Decision Rules 

Problem: "We just know what to do" 

Solution: 

  • Implementation partner facilitates discovery 

  • Ask "walk me through how you handled last exception" 

  • Document patterns from examples 

  • Create initial rules, test and refine 

Impact: 1-2 additional workshop sessions 

 

Scenario: Poor Data Quality 

Problem: Missing contact information, incomplete notes 

Solution: 

  • Work with available data 

  • Flag accounts missing info for manual handling initially 

  • Data cleanup as secondary project 

  • Expand AI coverage as data improves 

Impact: Lower initial automation rate (50% vs. 70%), improves over time 

 

 

The Reality 

AI agents need: Process examples (20-30 typical scenarios, 5-10 edge cases), decision rules (explicit if-then rules, implicit knowledge documented), customer segmentation (VIP identification, process variations), outcome definitions (success criteria, follow-up requirements), communication templates (tone, voice, existing templates). 

 

Data gathering process: Week 1 discovery workshop 6-8 hours, Week 2 data compilation 4-6 hours staff time, Week 3 review and refinement 2-3 hours. Total 12-17 hours over 3 weeks. 

Don't need: Complete historical database, perfect data quality, fully documented processes. Basics sufficient, refinement during pilot. 

 

Data sources: ERP exports, staff knowledge (workshops, interviews), existing documentation (templates, process docs). 

 

Insufficient data manageable: Limited examples use 5-10 plus hypotheticals. Undocumented rules facilitated discovery. Poor data quality work with available, expand coverage as improves. 

Implementation partner guides entire process. Not a solo staff effort. 

 

 

About the Author: This content is published by ERP AI Agent. 

 

Published: January 2025 | Reading Time: 7 minutes 

 

 
 
 

Recent Posts

See All

Comments


bottom of page